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This paper discusses the evaluation of a neurally augmented fault-tolerant flight control
scheme for a high-performance military aircraft featuring an adaptive actuator and sensor
failure detection, isolation, and identification algorithm in a motion-based flight simulator.
The design of the fault-tolerant control scheme is based on a nonlinear dynamic inversion
scheme with a neural network-based augmentation for reducing the dynamic inversion errors
associated with the occurrence of an actuator failure while a set of online learning neural
observers is used for dealing with specific sensor failures. The failure detection, isolation,
and identification scheme is based on an adaptive threshold technique for estimating failure
bounds associated with both actuator and sensor failures. Also, an ‘ad-hoc’ parameter is
proposed here for the novel task of evaluating the pilot workload in compensating for both
actuator and sensor failures onboard the aircraft. A general outcome of the effort is a demon-
stration of the importance of realistic motion-based simulation environments for evaluation
of this specific class of flight control laws. The study also demonstrated the importance of
the neural augmentation for failure accommodation purposes and the effectiveness of the
proposed adaptive threshold technique for failure identification purposes.

Nomenclature
b bias in a floating limiter bound
n number of samples for floating limiter calculation
pactual actual aircraft roll rate
pDNN roll rate estimate, from P-decentralized neural network
pMNN roll rate estimate, from main neural network
qactual actual aircraft pitch rate
qDNN pitch rate estimate, from Q-decentralized neural network
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qMNN pitch rate estimate, from main neural network
ractual actual aircraft yaw rate
rDNN Yaw rate estimate, from R-decentralized neural network
rMNN yaw rate estimate, from main neural network
Rpq pitch roll cross-correlation coefficient
Rrr autocorrelation coefficient in yaw channel
X̄ average of signal computed over the time window

Greek
β multiplicative factor for standard deviation
�t time following failure detection
�t1 time delay for failure isolation
�t2 time delay for failure identification
η composite parameter
μ scaling parameter for angular dominance
σ standard deviation for number of samples evaluated for floating limiter
ωpq angular rate dominance parameter

Subscripts
FL floating limiter bound (soft/hard) of the signal
HLB hard lower bound
HUB hard upper bound
SLB soft lower bound
SUB soft upper bound

I. Introduction

FAULT tolerance, failure detection, isolation, and identification (FDII) is a key research area in the flight control
community and has received considerable attention in the last decade [1–3]. The need for a form of a FDII scheme

gained visibility in the flight control community following commercial airliner accidents during the 1970s and 1980s,
a classic example being the Eastern 1080 flight accident [4] where an L-1011 aircraft experienced an uncommanded
elevator deflection to 19 deg. Thanks to 30 plus years of flight experience, the pilot was able to detect, isolate, and
identify the failure and was able to take successful corrective actions. However, many other such incidents were not as
fortunate. For example, it was concluded in a National Transportation and Safety Board report that the American Air-
lines DC10 aircraft accident [5] could have been avoided if some form of FDII logic would have assisted the pilot in his
initial efforts to regain control of the aircraft. Similarly, the loss of control resulting from the movement of the rudder
surface to its deflection limit resulted in the crash of the US Airways flight 427 in Pennsylvania [6]. While the need for
FDII schemes to ensure safety of passengers and cargo is clearly evident on manned civilian and military aircraft, the
implementation of this technology on unmanned aerial vehicles could also be extremely beneficial through an increase
in performance, reliability, and, consequently, lower losses and higher mission success rates. Typically aircraft do not
have redundant flight control surfaces and so, it becomes paramount for the pilot or the onboard flight controller to be
able to reconfigure the existing healthy control surfaces to help regain equilibrium and to continue on with the mission.
Several adaptive control approaches have been applied successfully toward this issue.Within this effort, fault tolerance
or reconfiguration is achieved by means of a neurally augmented dynamic inversion-based control scheme [7].

Failures on sensors onboard an aircraft can also lead to catastrophic conditions — especially when the mea-
surements are used in the feedback loop of the flight control laws. Classic examples are the crashes of the NASA
X-31 aircraft [8] due to accumulation of ice on pitot static tube, providing false information to the flight control
computers and the recent crash of a B-2 bomber [9]. Hardware redundancy is the traditional approach for sensor
fault tolerance. However, this redundancy implies additional weight and volume, higher equipment and maintenance
costs, and complexity. With higher premiums placed on cost, weight, and/or volume of the avionics payload on
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aircraft platforms, especially unmanned vehicles, hardware redundancy might not be an effective option. An alter-
native approach is given by leveraging analytical redundancy. Recent advances in control theory and mathematical
modeling have lead to the development of FDII implementations based on analytical redundancy methods. Analytical
redundancy approaches using model-based implementations [10,11], knowledge-based implementations [12,13], or
a combination of the two [14] have been successful.

The most critical element of any scheme designed for online analysis of failure characteristics onboard an aircraft
is the set of thresholds used for detecting, identifying, and isolating a failure. Using information represented by a
system’s mathematical model [15], sensor failures can be detected by setting thresholds on the residuals generated
from the difference between actual measurements and estimates of the measurements from the mathematical model.
Conventionally, fixed thresholds have been used for this purpose; however, it presents significant drawbacks since
fixed thresholds might not adequately reflect changing flight conditions. The design of a threshold scheduling scheme
could overcome this problem; however, this would entail a long and extensive statistical analysis of various flight
regimes and all potential failure scenarios, making the approach fairly unrealistic, especially for dealing with sensor
failures.

While fixed threshold approaches have been used for actuator [16] and integrated [17,18] sensor/actuator failures,
Perhinschi et al. [19] have extended the actuator failure FDII with an adaptive threshold, resulting in a lower rate of
false alarms and a relatively simpler logic. A similar effort for sensor failure [13] was performed using an adaptive
threshold concept.

Within this effort, the performance of a fault-tolerant flight control scheme (FTFCS) with neural augmentation,
based on the intelligent flight control system (IFCS) Gen-2 architecture is evaluated with an implementation of a
floating limiter-based FDII scheme. The paper is organized as follows. Section II describes the architecture of the
FTFCS, followed by a description of the adaptive FDII implementation. Section III describes the experimental setup
and in Sec. IV, the results from the actuator and sensor failure experiments are discussed, followed by the conclusions
in Sec. V.

II. FTFCS and FDII Algorithm for Actuator/Sensor Failures
The generic high-level architecture of the neurally augmented dynamic inversion-based control laws along with

the modeling of the failure is shown in Fig. 1.
The aircraft dynamics is based on a Fortran code for the simulation of a high-performance military aircraft,

distributed by NASA to academic institutions within the 1990 AIAA GNC Design Challenge [20]. The aerodynamic
and thrust characteristics are provided through 42 look-up tables, with 16 tables for the longitudinal dynamics as
functions of Mach number, angle of attack, and stabilator deflection; 20 tables for the lateral dynamics as functions

Fig. 1 IFCS Gen -2 architecture.
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of Mach number, angle of attack, sideslip angle, and rudder deflection; 2 tables for engine thrust and fuel flow as
functions of Mach number and altitude. The look-up tables have further been subdivided to isolate the contribution of
individual control surfaces in order to be able to simulate control surface failures [21]. The scheme also features a set
of pre-trained neural networks (PTNNs) to provide updated values of the aircraft aerodynamic coefficients once every
10 s, as it flies through different regions of its flight envelope. For all practical purposes, the PTNNs are equivalent to
the look-up tables for the aerodynamic stability and control derivatives. The FDII scheme is exposed to the implicit
change in the aerodynamic derivatives as the PTNNs are updating the derivatives used in the nonlinear dynamic
inversion (NLDI). This is an additional feature/improvement of the control laws meant to reduce the “burden” on
the neural networks (NN) that compensate for the inaccuracies of the NLDI. It is not expected that the behavior of
the FDII is changed when the derivatives in the NLDI are updated by the PTNNs because compensation is provided
anyway by the NN (working harder but still generating the required compensation). The only difference that occurs
is in the outputs of the NNs and these are not used in the detection scheme.

The desired handling qualities are defined through the use of first- and second-order reference models of a high-
performance fighter aircraft [22]. The reference model is then used to generate reference pitch, roll and yaw angular
rate commands based on pilot stick inputs, followed by a NLDI to generate control surface commands (δa , δe, δr ).
Under nominal flight conditions, NLDI has inherent errors stemming from inaccurate modeling of the aircraft. The
dynamic inversion errors associated with the NLDI scheme could be large due to modeling discrepancies. These
discrepancies can be due to “conventional” modeling errors or be a result of modeling errors associated with failures
and/or malfunctions of the control surfaces [23]. Regardless of the origin, the dynamic inversion error is minimized
through the neural augmentation of the NLDI scheme.

On the basis of earlier experiments on ‘Gen-2’ schemes, the schemes augmented with the EMRAN NN [16–18,
24, 25] demonstrated better results in comparison to schemes augmented with the Sigma-Pi and single hidden layer
(SHL) neural networks and is selected to provide the neural augmentation for both the actuator failure and sensor
failure scenarios in all the tests conducted for this effort. The extended minimal resource allocating neural network
(EMRAN) algorithm is a more powerful version of the standard MRAN and its main architecture features growing
and pruning mechanisms; moreover, the parameters are updated following a ‘winner takes all’ [26] strategy. The
extended algorithm allows only the parameters of the most activated neurons to be updated, while all the others
remain unchanged. In effect, the algorithm allocates resources (neurons) in order to decrease the estimation error
in regions of the state space where the mapping accuracy is poor. This strategy results in a significant reduction of
the number of parameters that need to be updated online, reducing the computational burden and thus making it
particularly suitable for online applications.

An important task in the design of a FDI or FDII scheme is the selection of thresholds that trigger the logic. The
resulting selection typically reflects a compromise between maximizing the detection capabilities while minimizing
the false alarm rate. While a number of FDII schemes featuring “fixed thresholds” have shown capabilities in correctly
detecting and identifying actuator and sensor failures [16,17] in desktop computer simulations, they tend to be very
sensitive to false alarms and/or incorrect identifications in the presence of a pilot-in-the loop. West Virginia University
(WVU) researchers [19] have introduced an adaptive threshold technique based on the concept of a “Floating Limiter”
(FL); this scheme eliminates the need for scheduling the failure thresholds with varying flight conditions. This scheme
was tested using the simulation code developed in house, as part of the WVU participation in NASA’s IFCS program
[11,18,19,23].

The FDII implementation in the overall scheme is based on two critical components, the main neural network
(MNN) and a set of three decentralized neural networks (DNN) designed to learn/mimic the aircraft angular rates
(p, q, r) from the aircraft states. For both the MNNs and the DNNs, a combination of an ADALINE [27] and an
EMRAN network (A+EMRAN) working in parallel has been implemented and provides desirable performance in
the presence of large nonlinearities without the computational burden on operation in areas without nonlinearities.
The outputs of the MNN at any time instant “k” are estimates of the angular rates (pMNN, qMNN, rMNN) using aircraft
state data from time (k − n) to (k − 1), while each of the DNNs, designated as P, Q, and R-DNN, are designed to
estimate the outputs of each of the three gyros, respectively. This approach is based on the inherent observability
property of the aircraft dynamic system. An important distinction between the MNN and the DNNs is in the set of
parameters that are used as inputs for learning. In fact, while the MNN uses p, q, r measurements from previous time
steps to generate a current estimate of the angular rates, the DNNs (P, Q, and R-DNN) exclude from their input set,
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the measurements from the respective gyro they are designed to replicate. For example, the MNN inputs includes,
among other parameters, the last “n” samples of sideslip angle (β), roll rate (p), yaw rate (r), aileron deflection (δA),
and rudder deflection (δR) while the set of inputs to the P-DNN is the same, excluding the roll rate measurements,
thus keeping the estimates from the P-DNN from being corrupted with the values from the failed sensor.

The estimates of the angular rates from the MNN are compared with the actual measurements (pactual, qactual,
ractual) at time instant “k” to define an error parameter; the main quadratic estimation error (MQEE) as follows:

MQEE = 1
2 [(pactual − pMNN)2 + (qactual − qMNN)2 + (ractual − rMNN)2] (1)

Similarly, another error parameter, the output quadratic estimation error (OQEE) is obtained by comparing the angular
rate estimates from the MNN and DNNs as follows:

OQEE = 1
2 [(pDNN − pMNN)2 + (qDNN − qMNN)2 + (rDNN − rMNN)2] (2)

At nominal flight conditions, the outputs from the MNN and the DNNs closely follow the actual measurements
from the P, Q, and R gyros; consequently, the error parameters MQEE and OQEE remain small. In the event of
a failure on any of the three gyros (sensor failure), the faulty information continues to be used in the learning
process of the MNN. This leads to a significant difference between the angular rate estimates from the MNN and the
corresponding estimates from the DNNs as the learning of the MNN is ‘contaminated’ by faulty measurements from
the gyros, while the DNNs are not. This facilitates the use of the parameters MQEE and OQEE during the failure
detection phase. Another error parameter, the DNN quadratic estimation error (DQEEx(x = p, q, r)) — defined as
the difference between the sensor measurements and the angular rate estimate from the corresponding DNN — is
used for sensor identification purposes.

DQEEx = 1
2 [(Xactual − XDNN)2] (3)

In the event of actuator failures, especially failures on the elevator/stabilator or ailerons, a coupling between
longitudinal and lateral directional dynamics is reflected in a cross-correlation between the roll and pitch rates of the
aircraft, represented as Rpq . Additionally, an autocorrelation function of the yaw rate Rrr can be used for the specific
task of isolating rudder failures Finally; an ‘ad-hoc’ defined angular dominance parameter ωpq can be introduced
and used for differentiating between stabilator and aileron failures. This parameter is defined as follows:

ωpq = |p| − μ|q| (4)

where “μ” is a scaling factor. Simulation studies [28] have consistently shown that the angular dominance parameter
is significantly higher for an aileron failure than a stabilator failure as there is little change in pitch rate due to an
aileron failure, while there is a significant change in roll rate due to a stabilator failure. After running a number of
simulations, a value of the scaling factor μ in the range [1.5, 3.0] was found to be sensitive enough to distinguish
between a stabilator failure and an aileron failure with failure magnitude of even less than 1 deg.

The FDII logic, shown in Fig. 2, is based on an adaptive autoregressive moving average (ARMA) filter, is termed
as a FL, and is used to assign bounds to the monitored parameters (MQEE, OQEE, Rpq, Rrr). The bounds assigned

Fig. 2 ARMA filter used for FDII formulation.
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Fig. 3 Time history of the MQEE FL following a failure.

by the FL to each of the parameter drifts dynamically (floats over signal) at the rate of the signal but less than a
pre-imposed limit, thus deriving its name. These bounds are a function of the autoregressive part that computes the
mean of the signal X̄ and the moving average part that computes standard deviation (σ) of the signal over a time
window of n time steps. The bounds are further classified into “Soft” and “Hard” bounds as defined below, based
on different values of the bias and the multiplicative factor, in order to distinguish between soft and hard failures on
either the sensors or the actuators.

XHUB = X̄ + βHUB · σ + bHUB (5)

XHLB = X̄ − βHLB · σ − bHLB (6)

XSUB = X̄ + βSUB · σ + bSUB (7)

XSLB = X̄ − βSLB · σ − bSLB (8)

Under nominal conditions, a typical FL, as shown in Fig. 3, will move at the rate of the signal at the set bias “b”.
However, following a failure (either on actuators or sensors), a perturbation arises in the signal being monitored,
which results in the signal exceeding the corresponding FL and, consequently, triggering a flag indicating a possible
failure. Typically, for failures of lower magnitudes or a low rate, the signal crosses just the “soft” bounds and a
persistence counter is then used to trigger subsequent detection or identification flags. On the other hand, typical
failures of large magnitude or high rate breaches even the “hard” bound, triggering detection or identification flags.

The FDII logic is divided into three distinct phases, that is the detection phase, the isolation phase, and the
identification phase, as explained below. A conceptual block diagram of the overall scheme is shown in Fig. 4.

A. Detection Phase
A failure on an actuator or a sensor leads to discrepancies between the measured angular rates and the corresponding

NN estimates. Specifically, the failure will cause large values of MQEE and/or larger values of OQEE. Therefore, the
condition for which a control surface failure is declared when the signal crosses the FL bounds is shown in Eq. (9)

MQEE � MQEEFL or OQEE � OQEEFL (9)

where subscript “FL” signifies the associated soft or hard bound for the FL signal.
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Fig. 4 Logical diagram of adaptive FDII scheme.

B. Isolation Phase
Following successful failure detection, the next step is the classification of the failure as an actuator or a sensor

failure. Since a substantial cross coupling of aircraft dynamics is associated with an actuator failure, the occurrence of
an actuator failure can be differentiated or isolated from the sensor failure scenario through the analysis of the cross-
correlation between the longitudinal and lateral-directional dynamics [16,17]. Thus, conditions for actuator/sensor
failure isolation can be represented through the following Boolean relationships as follows:

Rpq � Rpq_FL or Rrr � Rrr_FL and �t � �t1 ⇒ Actuator Failure (10)

Rpq � Rpq_FL or Rrr � Rrr_FL and �t � �t1 ⇒ Sensor Failure (11)

C. Identification for Actuator Failure Isolated
Following the isolation phase, the next step is to identify the failure as stabilator, aileron, or rudder failure—in

the case of actuator failures—or a pitch, roll, or yaw gyro failure—in the case of sensor failures. Simulation analysis
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has consistently shown that an aileron failure induces a higher roll rate than pitch rate and leads to higher values of
angular dominance ωpq than stabilator failures. On the other hand, rudder actuator failures are marked by a noticeable
change in the autocorrelation Rrr almost instantaneously and can therefore be used to identify a rudder failure from
an aileron or stabilator failures. These are mathematically represented as follows:

ωpq � ωpq_FL and �t � �t1 ⇒ Aileron Failure (12)

ωpq � ωpq_FL and �t � �t2 ⇒ Stabilator Failure (13)

Rrr � Rrr_FL ⇒ Rudder Failure (14)

D. Identification for Sensor Failure Isolated
In the event of sensor failures, the MNN continues its learning process, including the data from the faulty gyro;

on the other hand, the DNNs still estimate angular rates based on the actual and true dynamic of the aircraft. This
difference triggers a flag leading to the identification of the specific gyro with the failure. In case of a failure the
DQEEs cross their respective FL bounds and issues an identification flag which are given below:

DQEEp � DQEEp_FL ⇒ Roll Sensor Failure (15)

DQEEq � DQEEq_FL ⇒ Pitch Sensor Failure (16)

DQEEr � DQEEr_FL ⇒ Yaw Sensor Failure (17)

III. Experimental Setup
The MOTUS 622i Flight Simulator (MFS) at WVU is a 6-Degree-of-Freedom electromechanical actuator-based

motion simulator, custom-developed and commercialized by fidelity flight simulation. The simulator, shown in Fig. 5,
is extensively used to support flight simulation and control courses at the undergraduate and graduate levels [26], as
well as a number of research activities.

The simulator includes the following main components:
1) 6-DoF motion platform and cockpit driven by electrical induction motors;
2) Laminar Research X-Plane flight simulation software;
3) LCD mosaic wall for external visual display.
Within the cockpit, visual information is provided to the pilot by means of 6 LCD panels, with two displays

hosting the instrument clusters and four others serving as the windshield and windows of the airplane. The graphics
is handled by ‘X-Plane’, a commercially available flight simulation package. For this effort, the original cockpit

Fig. 5 WVU 6-DoF flight simulator system.
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Fig. 6 Experimental setup of the Simulink Gen-2 interface with MFS.

configuration is replaced with the graphics-based cockpit of a fighter aircraft, along with a joystick. The overall
schematic of the experimental setup is shown in Fig. 6.

In addition, the cockpit display is modified to provide some rudimentary FDII diagnostics in the form of brief
text warnings to the pilot. The motion cues of the simulator are driven by the acceleration commands from the
Matlab/Simulink-based flight control scheme, while the spatial cues were driven by the orientation and geographical
coordinates of the aircraft in X-Plane. The Matlab/Simulink implementation is interfaced with the simulator using
user datagram protocol (UDP) sockets. This provides a realistic simulation capability with visual and motion cues
to the pilot in the cockpit, while running FTFCS and FDII algorithms.

Within the scope of this effort, actuator failures are introduced in the form of stuck positions of the Left Stabilator
and Left Aileron. Furthermore, such failures are characterized as “Soft”, “Medium”, and “Hard” failures, based on
the control surface deflections at failure (2, 5, or 8 deg) representing typical actuator failures without any loss of
generality. Rudder failures were not selected because of a lack of alternative control mechanisms over the directional
dynamics. This is where we believe that fault-tolerant schemes coupled with thrust vectoring mechanisms will play
a critical role in next generation high-performance aircraft. Sensor failures, on the other hand, are introduced on the
angular rate gyros (pitch, roll, and yaw), assumed to be without hardware redundancy. However, this can be extended
to cope with failures of any sensor whose measurements are used for feedback purposes. The sensor failures are
simulated by inducing a drifting ramp bias categorized as ‘Small’ (4 deg) and ‘Large’ (8 deg) bias with different
drifting speeds or slope of the ramp and categorized as ‘Slow’ (8 s), ‘Medium’ (5 s), and ‘Fast’ (2 s). The specifications
of the actuator and sensor failure scenarios are listed below in Table 1.

Prior to conducting the experiments, the pilot was given some stick time in the simulator to familiarize himself
with the aircraft. During the experiments, sensor and actuator failures were introduced in a random fashion, in order
to reduce any effects of pilot learning/familiarity with the failures. To ensure an unbiased response, the pilot was not
briefed about the failure type (actuator/sensor) or its nature (hard/soft, small/large, or slow/medium/fast) prior to each
simulation and was introduced randomly. The simulation scenarios including the total time of simulation, the time
of failure as well as the nature and characteristics of the failure were set using custom developed Matlab/Simulink
GUIs shown in Figs. 7 and 8.

Once the experiment was set up and the simulation initiated, the pilot was given a free reign to fly the aircraft
until a failure occurred. Once a failure was detected, identified, and isolated, pilot was instructed to maintain a wings
level flight within 200 ft of the original altitude as a mission profile. The results from the actuator failure and sensor
failure experiments are discussed in the following section.
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Table 1 Actuator and sensor failure scenarios

Failure condition Magnitude

L. Stab./R. Ail. Hard actuator +8 deg bias
L. Stab./R. Ail. Medium actuator +5 deg bias
L. Stab./R. Ail. Soft actuator +2 deg bias
p, q, or r gyro Small, fast drifting bias (SF#1) +4 deg bias (ramp in 2 s)
p, q, or r gyro Large, fast drifting bias (SF#2) +8 deg bias (ramp in 2 s)
p, q, or r gyro Small, medium drifting bias (SF#3) +4 deg bias (ramp in 5 s)
p, q, or r gyro Large, medium drifting bias (SF#4) +8 deg bias (ramp in 5 s)
p, q, or r gyro Small, slow drifting bias (SF#5) +4 deg bias (ramp in 8 s)
p, q, or r gyro Large, slow drifting bias (SF#6) +8 deg bias (ramp in 8 s)

Fig. 7 GUI for actuator failure scenario.

Fig. 8 GUI for sensor failure scenario.
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IV. Results and Discussions
The objectives of the experiments performed in this effort are twofold. The first objective is the evaluation of the

performance of a neurally augmented, dynamic inversion-based FTFCS with a pilot in the loop in a motion-based
simulator The second objective is the evaluation of the effectiveness of an adaptive FDII implementation for the
detection, identification, and isolation of sensor and actuator failures.

A parameter, the tracking error (TE), defined as the difference between the angular rates generated by the reference
model and the actual aircraft angular rates is used for the purpose of evaluation of the performance of the controller.

T Ex = refx − actx, x = p, q, r (18)

An actuator failure introduces a coupling between the lateral and longitudinal dynamics and a strong cross correlation
between the aircraft angular rates. The coupling effects are also reflected as motion and visual cues to the pilot in the
cockpit and thus significantly influence the pilot reaction/workload under postfailure conditions. The TE statistics
along the pitch and roll channels, being dominant in the case of longitudinal and lateral failures, are analyzed over a
20-s time window around the instant of failure injection in the following sections.

For actuator failure scenarios, baseline results are established with the Gen-2 FTFCS, without any NN augmenta-
tion to compensate for dynamic inversion errors. The same experiments are then repeated with augmentation using
the EMRAN network and the resulting performance compared for various test conditions.

A. Analysis of Actuator Failures
Failures on actuators are limited to the left stabilator and right aileron, without any loss of generality and were

generated by simulating “stuck positions” at user defined deflections and time instants. Each category of tests in
Table 1 for the actuator failure are repeated five times for each surface with the pilot instructed to execute the same
mission profile and the TE statistics averaged for performance analysis.

As can be seen from the mean and standard deviation of TE from five runs of left stabilator failure shown in
Table 2, for a soft failure (2 deg), the mean of TE along pitch channel for EMRAN NN is 48% lower than for a no
NN scenario. For the roll channel, it is 56% less than a no NN case. Along the yaw channel, there is however an
increase of 22% in the TE compared with a no NN case, but this could be attributed to the relaxed constraints on
maintaining the heading, following a failure. Similarly, in case of the medium stabilator failure (5 deg), the mean
of TE shows a decrease of 52% along pitch and 61% along roll channel. The standard deviation (SD) from desired
pitch rate is also lower in all test cases and thus an indication of better TE performance with NN augmentation.

The performance of the adaptive FDII scheme in detecting, identifying and isolating the actuator failure is shown
in Fig. 9. For a soft failure on the left stabilator injected at t = 30 s, the MQEE parameter rises and crosses the soft
upper bound at t = 30.1 s, triggering a failure detection flag. Once this flag is triggered, an actuator failure is identified
when the parameter Rpq crosses its soft upper bound at t = 30.15 s. By monitoring the angular dominance parameter
ωpq , the failure can be isolated as either a stabilator failure or aileron failure. Since the angular dominance parameter
in this case did not cross its bounds in the time window of consideration, the failure is isolated as a Stabilator Failure.

Similar to the stabilator failure scenario, a failure on the right aileron was introduced at t = 30 s into the simulation.
The average of tracking error statistics for five runs of the right aileron failure scenarios is shown in Table 3.

For a soft failure, the mean roll channel TE with EMRAN augmentation is 64% lower than no NN case. For a
medium failure, it is 51% lower, and for a hard failure it is 78% lower than without neural augmentation. It can also be
observed that the mean TE along pitch channel is better for a soft failure, but increases with EMRAN for the medium
and hard failures and could be attributed to the severity of the failure (medium and hard actuator failures), the flight
condition and the pilot compensation (PC). The results of the adaptive FDII implementation for a soft failure on the
right aileron are illustrated in Fig. 10.

For a Soft failure on the right aileron injected at t = 30 s, the MQEE parameter rises and crosses the soft upper
bound at t = 30.15 s, triggering a failure detection flag. An actuator failure is declared when the cross-correlation
parameter Rpq breaches its soft upper bound at t = 30.2 s. The angular dominance parameter ωpq , clearly indicating
an aileron failure when it crosses its bounds in the time window of consideration.
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Fig. 9 FDII for stabilator failure: a) detection; b) isolation; and c) identification. UB and LB stand for Upper bound
and Lower bound, respectively.

B. Analysis of Sensor Failures
Sensor failures are injected on the pitch, roll, and yaw rate gyros as listed in Table 1 and the experiments repeated

five times for each scenario. A particular objective of sensor failure tests was to evaluate the effectiveness of the FDII
implementation with a pilot in the loop. As with the actuator failure scenario, the scheme is tested with EMRAN
augmentation, with failure injected at t = 30 s and the results for the pitch rate sensor failures in terms of average
detection, isolation, and identification times from five runs are listed in Table 4 and the corresponding plots shown
in Figs. 11–13.

In the case of the sensor failures, the parameter OQEE crosses its threshold, triggering a detection and is shown
in Fig. 9. The plots are zoomed in near the failure time to show the time at which detection occurs.

The variation of the cross-correlation parameter Rpq for the pitch sensor failure cases is shown in Fig. 10 and it can
be seen that FL bounds are not crossed for nearly 5 s after the failure is detected. The FDII algorithm subsequently
triggers the flag for the sensor failure isolation and the logic switches to sensor failure identification by monitoring
the DQEE. It can be seen from Fig. 11 that the parameter DQEE exceeds the FL bounds for the pitch channel,
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Fig. 10 FDII for aileron failure: a) detection; b) isolation; and c) identification.

Table 4 FDII results for pitch rate sensor failure

S.No. Failure cases Detection Isolation Identification

1 Pitch sensor SFDB 30.34 31.34 31.36
2 Pitch sensor LFDB 30.344 31.34 31.36
3 Pitch sensor SMDB 30.36 31.36 45.428
4 Pitch sensor LMDB 30.344 31.36 31.376
5 Pitch sensor SSDB 30.36 31.36 44.74
6 Pitch sensor LSDB 30.36 31.36 45.66

but does not exceed the bounds for both the roll channel and the yaw channel, thus providing the sensor failure
identification.

The overall results of the FDII for both the actuator failure scenarios as well as the sensor failure scenarios are
presented in Table 5. It can be observed that the adaptive FDII algorithm is very effective in detecting failures, with
only one missed detection for actuator failure scenarios and three missed detections for sensor failure.
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Fig. 11 OQEE for the pitch sensor failure (zoomed to show detections).

C. Pilot Workload
An additional result from the experiments was the evaluation of the amount of pilot compensation (PC), required

to recover from actuator failure scenarios and maintain the predefined mission profile. Similar to the TE statistics,
this is calculated over a 20-s time window (tw) around the instant of failure injection, along the pitch, roll, or yaw
channel and is defined as the sum of the absolute values of total stick activity along each channel, similar to an
approach by Gundy-Burlet et al. [29–31].

PCPitch,Roll,Yaw =
tw∑

k=1

∣∣Stick ActivityPitch,Roll,Yaw

∣∣ (19)

The averaged value of five runs of the stabilator failure is shown in Table 6. For a soft failure on the stabilator,
neural augmentation of the flight control scheme resulted in a 48% reduction in pilot activity along the longitudinal
channel and 34% along the lateral channel as compared with a no NN case. In the case of a medium failure, neural
augmentation EMRAN shows a 14% reduction along the longitudinal channel as compared with a no NN while the
mean PC increases along lateral channel by 3%. Similarly, for a hard failure, there is a 45% lower PC along the
longitudinal channel and 39% lower for lateral channel.

From the averaged value of five runs of the aileron failure shown in Table 7, it can be seen that there is a mixed
trend with reduced PC; for a medium failure, the pilot activity is lower along the lateral and longitudinal channels,
while it is higher for soft and hard failures in both lateral and longitudinal directions.
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Fig. 12 Rpq monitored to isolate the sensor failure.

From the independent trends of the TE and pilot compensation (PC), it is challenging to draw definitive conclusions
on the contribution of the neural augmentation in reducing pilot workload. For example, in the case of a hard aileron
failure, the mean of TE is lower with neural augmentation (Table 3), but at a cost of additional pilot activity (Table 7).

Defining a composite parameter (CP) “η” as the absolute value of the product of TE and PC, could provide a
useful performance index to quantify the performance of the adaptive controller as well as an indication of pilot
workload under failure conditions.

CP = η =
tw∑

k=1

|TEk × PCk| (20)

The CP is not a metric for pilot workload but a metric for the performance of the fault-tolerant control laws. Under
ideal conditions, there would be would be little errors with little pilot effort, but combinations of the two parameters
at all possible levels are imaginable. If we obtain a reduction in the TEs at the expense of a large pilot workload, we
cannot say that there is an improvement in the performance of the fault-tolerant control laws.

It can be seen from Tables 8 and 9 for the actuator failures, that the value of the CP “η” is lower with neural
augmentation for all the actuator failure cases tested. For the stabilator failure scenario shown in Table 8, the average
value of the CP is reduced by nearly 64, 59, and 87% in roll channel for soft, medium, and hard failure, respectively,
and by 59, 54, and 91% in the corresponding values along the pitch channel.

In the case of the aileron failure scenario, the roll channel is predominant and much of the pilot activity is directed
toward maintaining the mission profile along this channel. Considering the average value of the CP in Table 9, for
the aileron failure, the CP η is reduced along roll the channel by 58, 55, and 77%, respectively, for a soft, medium,
and hard failure, while there is a marginal increase along the pitch channel for soft , medium, and hard failures.
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Fig. 13 Identification of the pitch sensor failure (SF#4).

Table 5 Summary of piloted tests with adaptive sensor FDII

Total failures Correctly False False False No
Piloted Tests tested FDII detections isolations identifications detections

Stabilator failure 30 27 0 2 2 1
Aileron failure 30 28 0 2 2 0
Roll sensor failure 30 30 0 0 0 0
Pitch sensor failure 30 30 0 0 0 0
Yaw sensor failure 30 27 0 0 2 3

Table 6 Average pilot activity for stabilator failure

PC 2 deg (soft) 5 deg (medium) 8 deg (hard)

Stick activity No NN EMRAN No NN EMRAN No NN EMRAN

Lateral 1.2617 0.8213 1.3003 1.3457 4.2966 2.6074
Longitudinal 0.8311 0.4265 1.1070 0.9452 2.2463 1.2302

Table 7 Average pilot activity for aileron failure cases

PC 2 deg (soft) 5 deg (medium) 8 deg (hard)

Stick activity No NN EMRAN No NN EMRAN No NN EMRAN

Lateral 0.1336 0.3299 0.2931 0.1712 0.5979 0.6343
Longitudinal 0.2867 0.2977 0.5020 0.4295 0.4596 0.5955
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Table 8 Average CP values for stabilator failure cases

CP 2 deg (soft) 5 deg (medium) 8 deg (hard)

η No NN EMRAN No NN EMRAN No NN EMRAN

Roll 0.4244 0.1518 1.0342 0.4142 2.3814 0.3006
Pitch 0.1428 0.0580 0.3984 0.1793 1.1022 0.0906

Table 9 Average CP values for aileron failure cases

CP 2 deg (soft) 5 deg (medium) 8 deg (hard)

η No NN EMRAN No NN EMRAN No NN EMRAN

Roll 0.1645 0.0690 0.3065 0.1373 0.1645 0.0690
Pitch 0.0005 0.0037 0.0003 0.0031 0.0005 0.0037

V. Conclusions
The paper presents the results of an effort evaluating the performance of a neurally augmented FTFCS, and an

adaptive FDII scheme in a 6-DoF motion simulator. It was observed that the augmentation of FTFCS with a neural
network reduced the TE under postfailure conditions for failures on the stabilator as well as aileron. The adaptive
FDII scheme was found to be robust enough to take into account small perturbations from pilot activity and did not
raise false flags or alarms. The FDII scheme performed the best for sensor failure cases, particularly along the roll and
pitch channels with no cases of false FDII. However, a yaw sensor failure induced coupling along all three channels,
and made the scheme more susceptible to false detections. The actuator failure FDII was found to be acceptable as
it detected and identified the failures correctly for 90% of the test cases. However, due to the cross-coupling from
pilot activity there were a small number of cases of false detections and isolations. The CP provided valuable insight
into the contribution of the NN augmentation in reducing pilot workload while accommodating for failures. It was
observed that the trend of the CP was lower under postfailure scenarios for both stabilator failure and aileron failure
cases. The effectiveness of the FL-based approach to FDII could be expanded in the future to include elaborate
mission profiles in various regions of the flight envelope as well as multiple failures (successive sensor or actuator
failures) or reduced aerodynamic effectiveness (partial or complete loss of surfaces).
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